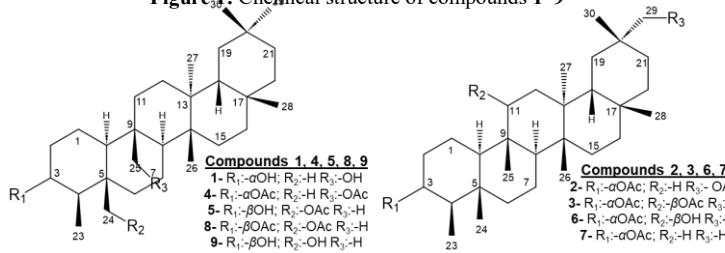


PENTACYCLIC TRITERPENES FROM *Maytenus quadrangulata* (CELASTRACEAE): ISOLATION, SEMISYNTHESIS, AND CYTOTOXIC ACTIVITY


Mariana G. Aguilar^{1*}, Sandy F. M. Quintão¹, Túlio R. Freitas², Adriano P. Sabino², Grasiely F. Sousa^{1*}, Lucenir P. Duarte¹

*marianag.a9@gmail.com, grasielysousa@ufmg.br

1- Departamento de Química, UFMG; 2- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFMG.

The genus *Maytenus*, one of the largest within the Celastraceae family, is widely recognized for its pharmacological potential, exhibiting diverse biological activities such as anti-inflammatory, antiulcerogenic, antioxidant, antibacterial, and analgesic effects.^{1,2} *Maytenus quadrangulata*, a Brazilian species popularly known as “espinho-de-deus”, has been previously studied for its hexane leaf extract, which demonstrated significant cytotoxic effects from isolated triterpenes.³ In this context, the present study aims, for the first time, to perform a detailed analysis of the compounds present in the chloroform extract of *M. quadrangulata* leaves. The chloroform extract was subjected to successive column chromatography (CC), leading to the isolation of the triterpene friedelane-3 α ,25-diol (**1**) and a mixture of hydroxylated triterpenes (**M1**). To separate the constituents of mixture **M1**, an acetylation reaction was performed, followed by CC purification. This process yielded five new semisynthetic triterpenes: friedelane-3 α ,29-yl diacetate (**2**), friedelane-3 α ,11 β -yl diacetate (**3**), friedelane-3 α ,25-yl diacetate (**4**), 3 β -hydroxyfriedelane-24-yl acetate (**5**), and 11 β -hydroxyfriedelane-3 α -yl acetate (**6**), along with two previously reported triterpenes: friedelane-3 α -yl acetate (**7**) and 3 β ,24-yl diacetate (**8**). Furthermore, the triterpene friedelane-3 β ,24-diol (**9**) was obtained by hydrolysis of compound **5**. Compounds **1–3**, **5–7**, and **9** were evaluated for their cytotoxic activity against leukemia cell lines (K-562, THP-1) and healthy lung fibroblast cells (WI-26VA4). The IC₅₀ values of the tested compounds ranged from 28.9 μ M to over 300 μ M for THP-1 and K-562 cells, with selectivity indices between 0.3 and 3.3. The compounds showed low to moderate cytotoxicity relative to the positive controls (etoposide and cytarabine).

Figure 1: Chemical structure of compounds **1–9**

Table 1: IC₅₀ values and selectivity index of the tested compounds

Compounds	THP-1	SI	K562	SI	Wi-26VA4
1	245.6 \pm 12.5	0.3	45.9 \pm 4.8	1.5	70.9 \pm 5.6
2	210.5 \pm 8.9	ND	66.5 \pm 5.4	ND	> 300
3	230.4 \pm 9.1	1.0	74.2 \pm 6.3	3.3	244.5 \pm 10.8
5	81.3 \pm 8.8	1.3	58.9 \pm 4.5	1.8	105.5 \pm 10.3
6	120.8 \pm 7.1	0.7	28.9 \pm 3.6	3.1	88.9 \pm 6.0
7	> 300	ND	> 300	ND	> 300
9	> 300	ND	35.4 \pm 5.6	ND	> 300
Etoposide	ND	ND	34.6 \pm 4.2	ND	ND
Cytarabine	40.7 \pm 4.4	ND	ND	ND	ND
Doxorubicin	ND	ND	ND	ND	1.9 \pm 0.9

Keywords: Triterpenes, Celastraceae, Cytotoxic activity, *Maytenus quadrangulata* *ND = not determined

References: 1. Camargo, K. C. et al. *Molecules* 2022, 27, 3. 2. Huang, Y. Y. et al. *Molecules* 2021, 26, 4563.

3. Aguilar, M. G. et al. *J.Braz.Chem.Soc.* 2022, 34, 10.

Acknowledgments: CAPES, CNPQ, FAPEMIG.